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Analysis of a cylindrical imploding shock wave
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The self-similar solution of the gasdynamic equations of a strong cylindrical shock
wave moving through an ideal gas, with y = ¢, /c,, is considered. These equations are
greatly simplified following the transformation of the reduced velocity

Oy(§) > Uy = Hy + 1) (U +§).

The requirement of a single maximum pressure, d; P = 0, leads to an analytical deter-
mination of the self-similarity exponent a(y). For gases with y < 2+ 3% the slight
maximum pressure occurs behind the shock front, nearing it as y increases. For
v > 24 3% this maximum ensues right at the shock front and the pressure distribu-
tion then decreases monotonically. The postulate of analyticity by Gelfand and Butler
is shown to concur with the requirement d, P = 0. The saturated density of the gas
left in the wake of the shock is computed and — U7 is shown to be the reduced velocity
ofsoundat P =P,

1. Introduction

There is an increased interest in the problem of implosion. Among other applications
it is viewed as a necessary step in realizing controlled thermonuclear fusion (Nuckolls
et al. 1972; Clark, Fisher & Mason 1973). As pointed out by Kidder (1974), ‘there are
two basic ways in which laser induced blow-off pressure can be employed to produce
high compression, which represent opposite limits. They are the strong spherically
convergent shock [Zeldovich & Raizer 1967] and the shockless or isentropic com-
pression’ (Kidder 1974). It is conceivable that a cylindrical configuration may present
certain advantages and we consider in the following the general problem of shock
waves having a cylindrical symmetry, both exploding or moving away from the axis
of symmetry and imploding or converging onto the central axis. At the shock front
the entropy is not conserved.

A sudden release of a substantial amount of energy, evenly distributed along the
central axis, produces a cylindrical explosion. As time increases, the position R(t) of
its shock front increases. The imploding cylindrical shock wave can be thought of as
induced by a ‘cylindrical piston’ converging onto the central axis. We assume the
shock wave to move in a perfect gas, with a constant ratio y = ¢,/c,, its front reaching
theradiusr = Bjattime? = 0. The explosion occurred ¢, seconds earlier. The imploding

1 Permanent address: Koyo Seiko Ltd, Japan.
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shock wave collapses at the centre ¢, seconds later. A strong imploding shock, or a
sequence of such shocks, can compress substantially the matter around the axis of
symmetry. We assume the gas to present a continuum and neglect its molecular
structure, and the dissipative processes associated with it. We consider here a single
imploding shock wave up to its collapse time at the axis of symmetry.

With the matter compressible the underlying conservation equations of mass,
momentum and energy are the well-known gasdynamic equations written in a cylin-
drical co-ordinate system (Landau & Lifshitz 1959; Courant & Friedrichs 1957). The
system possesses no characteristic length and we consider the self-similar solution of
these equations (Taylor 1946). In both cases we attempt an analytical determination
of the self-similar exponent, see §§3 and 6. A more detailed analysis of the problem of
implosion shock is also presented.

In the case of a strong exploding shock, the energy per unit length released suddenly
at the axis of symmetry is conserved. This time independence leads directly to the
value, & = 0-5, of the self-similarity exponent, see §3. Obviously this principle is in-
applicable in the case of an imploding shock wave coming from infinity. However,
we notice that at the shock front there is a sudden jump in the pressure which continues
to increase and reaches a maximum P, behind the shock front (Zeldovich & Raizer
1967, p. 804 and note). The pressure dies out in the wake of the shock wave. The
postulate of a single maximum pressure £, behind the shock front leads to an analytic
determination, in closed form, of the self-similarity coefficient A(y) and & = 1/(1 —A),
see §6 and figure 1.

The slight maximum in the pressure distribution behind the shock front may escape
unobserved in a not very careful numerical solution. At y = 2+ 3%, this maximum
occurs at the shock front and the pressure distribution function then decreases almost
monotonically.

A physically meaningful solution of the conservation equations must be single-
valued (Zeldovich & Raizer 1967, p. 801). The shock front presents a discontinuity in
the pressure, density and velocity distributions of the gas. Behind the shock front
the pressure, density and velocity and their derivatives must be well-behaved func-
tions. The solutions derived in this paper are shown to be both single-valued and
non-singular.

Gelfand investigated the nonlinear gasdynamic equations of an imploding shock
moving through an ideal gas and showed that there is a whole interval of possible
values of the self-similar coefficient A. He then proposed to choose A on the basis of
analyticity of the resulting solution (Brushlinskii & Kazhdan 1963).1 Butler (1954)
also investigated the problem of implosion with the aid of a high-speed computer and
chose the ‘one non-singular solution of a system of nonlinear equations’. Obviously
then this postulate of analyticity must coincide with the requirement of a single
maximum in the pressure distribution behind the shock front. This is shown in §9.

Section 2 presents the mass, momentum and energy conservation equations
and their self-similar solution in the form of products of a time-dependent part 7'(¢)

1 Brushlinskii & Kazhdan (1963) present a thorough mathematical treatment of the prob-
lem of implosion. They report that in 1952 I. M. Gelfand proved that in problems of the type
indicated for certain ranges of parameters there exist a whole interval of values of automodel
exponents corresponding, generally speaking, to solutions non-analytic on the characteristics.
He proposed, however, to choose the exponent on the principle of analyticity.
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F1GUrE 1. The reduced pressure behind a strong cylindrical imploding
shock wave in a perfect gas with y = $.

and a §-dependent function =(£), f(r, t) = T(t) E(£). The variable £ = r/R(t) is non-
dimensional, R(f) is the radius of the shock front. A new reduced velocity U(£) is
introduced that greatly simplifies the expressions of the hydrodynamic derivative and
that of the following ordinary differential equations. U(£) is shown to be the non-
dimensional speed of sound at P(£) = F,, (see §7). Following the £, U—»x =d, U,
y = U/ transformation presented in §5, the self-similar exponent « is determined
analytically in §6, in which the physical admissibility of the proposed solution is also
discussed.

2. Basic equations, the self-similar solution

The mass, momentum and energy conservation equations in cylindrical symmetry
read (Landau & Lifshitz 1959; Courant & Friedrichs 1957)

U 0 0

dep+pdutpr=0; d==; 0=
a d (2.1)

diu+p10,p=0; dtsaz:at-kua,;

d(pp™) = 0.
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p, p and u denote the pressure, density, and velocity of the gas assumed ideal with a
constant ratio y = ¢, /c,,.

We consider a shock discontinuity moving through the gas of density p, and denote
by R(t) the position of the shock front and by E(¢) its velocity. In case of a very strong
shock the pressure the shock encounters can be neglected and the pressure, density
and gas velocity right behind the shock front are (Courant & Friedrichs 1957; Zeldo-
vich & Raizer 1967)
v+1 2

Pos U= mR. (2.2)

poli? p=

=3+ y—1

We measure the position r of any point behind the shock in units of R(f),

- 2.3
£ L (2.3)

and consider the self-similar solution of the conservation equations (2.1),

p= o pBPE); p=110

2
v+ p PR E); u =g RU), (2.4)

in which the time scales of the pressure, density and gas velocity at any point £ are
exactly the same as at the shock front and the shape of the p, p and u distributions is
preserved in time. P(£), Z(£) and U,(£) are the dimensionless reduced pressure, density
and velocity, respectively. At the shock front, £ = 1, and

P(y=201)=U01)= 1. (2.5)
The derivatives of the product function,
flr ) = T(t)E(E), (2.6)
with respect to r and f are
of = ET -5 €T
Loy
= 2 B
dif = at+“3”:“T+(y+1Ul'§)TzT“
The transformation (Fujimoto & Mishkin 19774, b)
1
U0 =1 w+g (2.8)
introduces the new non-dimensional velocity U,
u=RU+E), (2.9)
and simplifies the hydrodynamic derivative (2.7),
- R,
dif =ET+U=5TE". (2.10)

R
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At the shock front,

y—1
Ul = m——— 2.11
(1) = =255 (2.11)

see (2.5) and (2.8). The term — U(£) is the reduced speed of sound,
- U =[2/(y+1)]CE,),

at the point when the pressure P(£) is maximum, d; P = 0 (see §7). The self-similar
solutions (2.4) now reduce the partial differential conservation equations (2.1) to the
set of the three ordinary differential equations

dZ dU dE _df
— = 422922 12
7= 7" E +25, (2.12a)
y—1 dP
el 1 2.12b
TR @ UdU +AEdE+ (1 +A) UdE, ( )
dP aU d§ dg
~F —7(—5+€)+2(A+7)Z]—_’ (2.12¢)
dinR
= 2.13
where A TnR ( )
Po Was here assumed constant.
Separation of the variables ¢ and £ requires A = const. and hence
R(t) = Byt £ t/t)" o= 1— i/\. (2.14)

The time ¢ is measured in units of ¢,. At time ¢ = 0 the shock front is at R,. The plus
sign corresponds to an exploding shock and the minus sign to an imploding shock wave.

In the implosion case, (2.12a) and (2.12¢) are directly integrable, from the shock
front at £ = 1 to some arbitrary point £ behind it, but for the last term. We formally
then introduce

5 !
oe) = exp| - [ Fom|i =1 dow= -7 @)
) dg
o(o0) = exp [~f1 Wg)]
It is shown below that 7_—_1 i [ig)]z
Y+1leo £

defines the maximum compression ratio p(c0)/p(0) that can be achieved by means
of a single strong cylindrical imploding shock; see (8.2).

In the following the exponent « of the self-similar solution is to be found analytic-
ally for both kinds of shock wave.

3. Cylindrical exploding shock wave
We assume a finite energy E per unit length, released suddenly along the cylindrical
axis at time { = —{,. A strong shock is created whose front {, seconds later reaches R,.
When Z is large and the shock front is not too far away from the axis of symmetry,
3 FLM 89
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the pressure the shock encounters can be neglected. The energy E transmitted to the
gas behind the cylindrical shock is then conserved or time independent,

E=JR (;,l)—1+%pu2) Smrdr = —T%_ R%,(1+£)41—ZJI(P+9?U§)§(1§
=

-k ¢ 0
= const. (3.1)
See (2.3), (2.4) and (2.14), whence a = 0-5. (3.2)

When the exploding shock is spherically symmetric the self-similarity exponent
a = 0-4. (See Stanyukevich 1960.)

4. Imploding shock waves

The centre-axis-bound imploding shock wave is produced by some kind of con-
verging ‘cylindrical piston’. The determination of the value of the self-similar
exponent a, (2.14), £\«

R0 =R (1=
cannot follow the simple energy conservation principle applied in the previous sec-
tion, or some dimensional considerations. It is based here on the following pressure
considerations. For the sake of simplicity we consider strong shocks only where the
initial pressure of the gas and its internal energy through which the shock wave moves
can be neglected. At the shock front the imploding wave causes a sudden rise in the
pressure which at first increases, for small values of £, and then decreases until it
vanishes at the tail of the shock at £ = co (Zeldovich & Raizer 1967, p. 804 and note).
The pressure then reaches a maximum, or

d.P =0, (4.1)
at some value of £ behind the shock front (Fujimoto & Mishkin 1977a, b). This maxi-
mum P, (£) occurs behind the shock front for all gases for which y < 24 3% For
v = 2+ 3%, P, occurs right at the shock front ; see (6.9).

The shock front represents a discontinuity in all the functions representing pressure,
density, or velocity of the gas. Behind it all these functions, and their derivatives, are
well-behaved functions. Gelfand proposed then to choose the self-similarity solution
on the principle of analyticity (Brushlinskii & Kazhdan 1963; Butler 1954).

In order for the solution of the gasdynamic equations to be physically meaningful,
it must be single-valued (Zeldovich & Raizer 1967, p. 801). The dimensionless density
and pressure follow a direct integration of (2.12a) and (2.12¢) from the shock front
at £ = 1 to some arbitrary point £ behind it,

Y : 4.2
Y+1Z0@) “2)

1—y 1 ]7

P& =|—FL _— _ 2A+7)
-yl o
see (2.15).
It follows from (2.125, ¢), (2.5) and (2.11) that at the shock front

2

dEU(1)=_6A(y+1)+y +6y+1 (4.3)

(y+1)?
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Since the non-dimensional velocity U, of the gas is a monotonically decreasing func-
tion of £, the slope of U] at the shock front is negative,

d:U(1) < —1; (4.4)
see (2.8). In the wake of the shock, at £ = o0, the gas is back at rest and the non-
dimensional velocity vanishes, Uy(o0) = 0, (4.5)
leading to UE—»>xo)=—§ dU(o0)=~1. (4.6)

In the following computations the slope of the non-dimensional pressure curve
versus £ proves to be of prime importance. Its value at the shock front is

2y—1
dP(1) = —277?(,\40); (4.7)

_ yly—1)
T v+ @y-1)
see (2.5), (2.11), (2.12) and (4.3). It is positive, i.e. the pressure has a maximum behind

the shock front, when d;P(1) >0, when A <A, (4.8)

The velocity U,, pressure P, and density # are all functions of U. The differential
equation of U follows from (2.125, ¢),

FHAr-D) Ud;U+(1+A)U+AE ('y+1)7+1[§U ]y; (4.9)
y(Ed, U+ U)+2(A+7)§ 2 1—y
see (2.15) and (4.2). Its logarithmic derivative reads
2/\+'y-1_2'yd5U+'y§d§U+2(/\+'y)_ U+£d,U
U~ i, U+2A+7)E+y0 ' EU
2
_(ng)2+Ud5U+(A+1)d5U+A. (4.10)
UdU+(A+1)U+AE

5. The z, y plane

The differential equation of U is a difficult nonlinear one and it is instructive to
consider it in the U /£, dU /d& plane. We then introduce the transformation §, U -z, y,
where x and y denote the ratios

x=d,U; y=

(5.1)

which reduce (4.10) to a first-order differential equation and cast it in a form amenable
to an analytical determination of the self-similarity exponent « presented in the next
section. It also shows that the reduced pressure P(£) reaches a maximum F, (£) behind
the shock front and determines its value and position (z,,, ¥,,) in the new z, y plane.
Similarly, the density of the gas in the wake of the shock is shown to saturate at the
value found in §8.

The derivative relationships

do = 2U; dy =" ety =" (5.2)

3-2
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F1GuRE 2. Motion of the strong cylindrical imploding shock in a perfect gas with ¥y = % in

the z, y plane. z,, ¥, denote the point at which the pressure is at its maximum.

follow directly from the definition (5.1). Substitution of these relationships into (4.10)
results in the derivative form of the curve in the z,y plane,

_Yy—2) [yy* + (v + 24 —yA)y —yA]
4y = Gl ) ’ %9)
where  G(z,y;A) = [y(x+y+2)+ 2A— D] [y(@+y+2)+ 2A] [y(@+ A+ 1)+ A]
= 2y[yl+ 1)+ A][yl@+ A+ 1)+A] (5.4)

+yle2+ (1 +A)z+A) [y(x+y+2)+ 2A].

G(z,y;A) = 0, at the point (x,,,y,,) discussed below, on the curve (5.3); see figure 2.
At the front of the shock, £ = 1 and y(1) = U(1); (1) = d, U(1) are given by (2.11)
and (4.3), respectively,

6A(y+1)+y2+6y+1 y—1
(1) i R (5.5)
At the other end of the (5.3) curve, in the wake of the shock
x(0) = y(wo) = ~1; (5.6)

see (4.6).

6. Analytical determination of the self-similarity coefficient A
The pressure vanishes in the wake of the shock wave,

lim P(¢) = 0. (6.1)

)
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When the pressure rises at the shock front,
d§P(5)|§=1 >0, (6.2)

P(f) must have a maximum at some value, 1 < £ < 00, behind the shock front. Its
derivative at this point d,P(§) = 0. Following the £, U — «,y transformation (5.1),
(2.125) and (2.12¢) then take the form

ry+A+1)y+A=0;
v +y)+2A+7y) =0, (6.3)
or YYE+y(y + 24 —yA)—yA = 0. (6.4)

The reduced pressure has a single maximum £,,(£,,) when the discriminant A of the
last quadratic equation is zero} (see also appendix),

Y
A=A, = —m. (6.5)

The maximum pressure P,, occurs at the point (z,, y,,) on the (5.3) curve,

]
R W S
Ym = — (=) ey
B 2y
v, = — [1 + 2”2]. (6.6)
As the value of y varies from y(1) to y(c0) = — 1 (see (5.5) and (5.8)), it equals y,, at

some £ . At this point, with A = A,,, the value of z is z,, given by (6.6); see figure 2.
The value of the maximum pressure P,,(£) can be obtained with the aid of (4.2),

Bultn) = [ 0wt o9 g, (6.7)
where o(£,) = exp [_J‘fm%é] = exp [—f::)‘;/_(—}?—/_y—)] s (6.8)

see (2.15) and (5.2).

We note that the derivative form d,y of the curve (5.3) is non-singular for although
its denominator Q(z, y; A,,) vanishes at (z,,, y,,) When the pressure is maximum,d, P = 0,
and at the tail of the shock, when z(0) = y(o0) = — 1 (see (5.4) and (6.3)), the numerator
of (5.3) also vanishes at these two points; see (5.3) and (6.4).

We shall consider now in greater detail the functional dependence A(y). We note
that two ranges of y are to be distinguished: (a) 1 < y < 2+ 3% and () the physically
less important domain 2 + 3% < y.

(@) 1 <y <2+3%
In this domain, as shown before, the pressure reaches the value P, at some point

behind the shock, the discriminant of the quadratic {6.4) is zero and A(y) = A,, is
given by (6.5). Tables 1 and 2 show the values of A,, and «,, given in closed form by

t The discriminant of the quadratic equation {6.4) also equals zero when
A=A, = —y/(yh-2h2,
This value of A must be rejected, for it violates the inequality (5.5).
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v 11 11/9 9/7 7/5 5/3 3 2+3%
A, = ‘@%T)ﬂ —0-181 —0-193 —0-198 —0-207 —0-228 —0-303 —0-333
O = 1—}Am 0-847 0-838 0-835 0-828 0-814 0787 0-750
a,, derived 0-885§  0-858§  0-849§  0-835*1§ 0-815%t§ 0-778§  0-771§
numerically 0-834% 0-810*

TaBLE 1. The self-similarity coefficients A,, and the self-similar exponents «,, for various values
of v < 2+ 3% The numerically computed values of a,, are those given by:

* Guderley (1942).

+ Butler (1954).

1 Stanyukevich (1960).

§ Lazarus & Richtmyer (1977); the values of a,,, fory = 4%, 2 and 2 4 3% are extrapolated.

Y 4 8 6 10 ©
—yy—1)
= —0-343 —-0370 —0-390 —0-431 05
*T @@=+
1
@ =1y 0-745 0-730 0-719 0-699 0-667
]

Numerically computed values of o, 0-500*

0-763 0-756 0-751 0-741 0-727

TABLE 2. The self-similarity parameter A, and self-similarity coefficient ¢, for various values
of ¥ > 2+ 3}, The numerically computed values of &, are taken from Lazarus & Richtmyer
(1977).

* Value given by Stanyukevich (1960).

(2.14) and (6.5), and also those derived with the aid of a computer (see Guderley 1942;
Butler 1954; Stanyukevich 1960; Lazarus & Richtmyer 1977). The curves of A, (y)
and Ay(y) [see (4.7)] are shown in figure 3.

Equations (5.5) and (6.6) show that, for ¥ = 24 3%, the pressure has its maximum
right at the shock front,

Ty =2(1); yn=y(1), at y=2+3L (6.9)
Also at this point, A, = Ay; dP(1)=0; for y=2+3% (6.10)

The slope of the pressure curve at the shock front is then zero; see (4.7). The ratio of
the y,, co-ordinate of the maximum pressure to y(1) at the shock front, as a function
of v, is shown in figure 4.

Let us examine the other regions of the A,y plane, shown in figure 3. In the region
@), A < A,,, the discriminant A < 0, and the left-hand side of (6.4) never vanishes. In
the ® region the discriminant of the quadratic (6.4) is positive. The double zero of
(6.4)at (x,,,y,,) (seefigure2)splits; there are now two solutions of (6.4), y,, y,, at which
d; P = 0, both behind the shock front. The pressure distribution P(£) is as shown in
figure 5(a); it has a minimum and a maximum. It is seen that at the shock front the
slope of the pressure distribution is negative, d; P(1) < 0, contrary to that postulated
by (4.7), which must be positive for A,, < A < A,,.

In the © region, A > A, and as can be easily shown the two zeros y,,y, of the
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F1eure 4. The ratio of y,,, the value of y at the maximum pressure, to y(1), the value of y at
the shock front, as a function of y. For y > 2+ 3%, y,, oceurs at the shock front.

quadratic (6.4) now occur, one ahead of the shock front at £ < 1, and the other behind
it at £ > 1; see figure 5(b). The slope d; P(1) of the shock front is now positive, again
contradicting (4.7).

A = A, [see (6.5)] then is the only physically admissible solution for 1 <y < 2+ 3%,
This is shown again in the next section, where it is evident that — U is the speed of
sound, at P = P,,, U(g,,) = [2/(y + D] CE,).
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(a) b)
p p
1-0 t— 1-0 £ —>
1<y< 243"
(c) (d) (e)
P p p
1-0 t— 1-0 £ —> 1-0 §—>
7>2+3'1

F1aure 5. Considerations of the self-similarity coefficient A occurring in the various domaina of
the A, ¥ plane shown in figure 3 and the slope of the pressure curve at the shock front d;P(1).
(@) Region, Am < A < A, (b) Region(C), Ay < A < 0. (¢) A = A,,. (d) Region(®), A,, < A < Aq.
(e) Region(C), A,, < A < A,.

() v>2+3t
In this domain, (4.7), A y(y—1)

T (y+D@y-1)

The discriminant of the quadratic (6.4) is now positive and the pressure reaches a
maximum right at the shock front, after which it decreases monotonically (Zeldovich &
Raizer 1967).

It was shown that, at A = A,,, the pressure distribution has one maximum only
which at y = 2 + 3% occurs right at the shock front; see (6.9). At larger values of y
this maximum occurs in the non-physical region, ahead of the shock wave, where
0 < £ < 1; see figure 5(c). In the (B) region, now where A,, < A < A,, the discriminant
of the quadratic (6.4) is positive and d; P = 0 at two points, both of them still ahead of
the shock front (see figure 5(d)). In the (§) region, A, < A < 0, and the two points at
which d; P = 0 now are one ahead of the shock front and the other behind it (see
figure 5(e)). It is easily seen that in all these three cases the slope of the pressure dis-
tribution at the shock front d; P(1) is of a sign that contradicts (4.7), leaving A = A,
as the only physically admissible solution for d; P(1) = 0; see (4.7).

Am=m}§—w for 1<y<2+38Y

__—vy-1) .
o—m—_—l—) for 2+3§<’}/, (6.11)

see figure 3.
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10 Em I's 20 f

Ficure 6. The curves of the reduced velocity U and the reduced speed
of sound [2/(y + 1)] C behind the shock front.

Table 2 shows the values of A, and «, = 1/(1 - A,), computed with the aid of (4.7),
and compares them with the hitherto available numencal values of «,.

7. The reduced velocity U

U was formally introduced in §2 in order to simplify the expression for the hydro-
dynamic derivative (2.10) and in turn the ordinary differential equations (2.12). We
shall now show that — U is the speed of sound, but for a y-dependent constant, at
the point where the pressure is maximum behind the shock front,

2
-U = . Y +3

see figure 6 and (7.6).
Equations (2.125) and (2.12¢) read

Y= 1 dg
1+0)y+Ad = -2 L6 . 7.2
d£
vie+y)+2(y+A) = — U‘ﬁ"
We used here the transformation (5.1). Eliminating x we obtain
'yy2+(2/l+'y-—y/1)y—-/\y=—[——-i——02 U]d§ (7.3)
(y+1)? EpP’
where the reduced speed of sound of the ideal gas C(£) is A(y) dependent,
=yl 2 = k2Ce; Cz(g)=y__7"1ﬂ§_)- (7.4)

2 RE)
see (2.4).
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Fieure 7. The [4/(y + 1)2] C2— U? versus £ curve,

In the interval 1 < y < 2+ 3%, when A = A, (7.3) takes the form

4 d, P
Y —Y)? = — [6/71_)2 c2— Uz] z%. (7.5)

See (6.6). At (,,,9,,) the pressure is at its maximum and d, P = 0. The left-hand side
of the last equation is an even function of y around y,,, where it vanishes. On the right-
hand side of this equation d, P is an odd function of y around y,,, where it also vanishes;
see figures 1 and 2. It follows that

4
(y+1)

Around y,,, [4/(y+ 1)?]C2— U2 is an odd function of y, see figure 7.
At the shock front, 2 = }y(y--1), and

C2—U=0 at dP=0. (7.6)

4 2 y—1
—_— 1)=-U2%1) = =—; 7.7
G- U =T (7.7)
see (2.5), (2.11) and (7.4). At very large values of £,
4
(—’}-’:_1)_202_U2+_§2 fOI‘ §> 1; (78)

see (4.6). The [4/(y + 1)2]C2— U? curve is shown in figure 7. It passes the £ axis at
£, where P = P,. As vy increases from 1 to 2+ 3%, £,, tends towards the shock front
at £ = 1. Figure 8shows £,, as afunction of y. Even at small values of y, £, is very close
to 1 and the pressure reaches a maximum close to the shock front.

Equation (7.6) proves that the discriminant of the quadratic on the left-hand side
of (6.4) or (7.3) cannot be positive in the domain, 1 <y < 2+ 3% or that the solution
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Ficure 8. The self-similar variable §,,, at the point where the pressure
reaches maximum, as a function of y.

A(y) cannot be found in the domains B) or ) of figure 3. When the discriminant is
positive, there are two values y,, ¥, at which the left-hand side of (7.3) vanishes,
Y=y (y—y.) = —[ﬁ02~02]%§, (1.9)

at (zy, ¥;) and (s, ¥,) [, T, are obtained by inserting the values of y,, y, into (6.3)].
When passing through y, or y, the left-hand side of the last equation changes sign and
[4/(y+1)*]/C*— U? now cannot vanish at dyP = 0. The function d;P now is odd
around y, and y,. The right-hand side of (7.9) then vanishes at three values of ¥ while
the left-hand side is zero only at two. In the © domain A, < A (see figure 5(b)), the
left-hand side of (7.9) vanishes at one point only behind the shock front, while the
right-hand side of (7.9) would have to vanish at two.

A similar argument made for gases with ¥ > 2 + 3% shows that now the only physic-
ally admissible solution is A = A, [see (4.7)] in agreement with the slope of the pressure
curve consideration of the previous section.

8. The density of the gas in the wake of a strong imploding cylindrical shock

A strong imploding cylindrical shock moving through a gas of density p, compresses
the gas behind it to the density p(co, ), which is finite and independent of the strength
of the shock. It depends upon the ratio y only. The final reduced density,

po,t) _y+1
= R = 00 8.1
=l =) (8.1)
(see (2.4)), follows directly from (4.2),

2(6) = ~ L5 2070 %)
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Ficure 9. The saturated density of the ideal gas under the
impact of a single strong imploding shock.
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TaBLE 3. The final density of an ideal gas in the wake of
a strong imploding cylindrical shock.
At the tail of the shock, when £ — oo, the gas is again at rest and, (4.6),
limU() = —¢&.
§—o
The reduced density of the gas left in the wake of the cylindrical shock is
00, t . [o(&)]? . 1 £ dg' )2
ple0, ) = lim [__g_@] = lim [— exp{—f —L,}] , (8.2)
Po f—o g £~ g 1 U(g)

see (2.15).

Figure 9 and table 3 show the saturated gas density, left in the wake of a single
strong shock with no reflexion, for various values of y. For y = §, the ideal gas is

compressed by a ratio of about 6-9.
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9. The postulate of analyticity by Gelfand and Butler

The self-similar solution of the gasdynamic equations of the implosion problem
was investigated by Gelfand who showed that there exists an interval of possible
values of A for the same y. Gelfand then proposed to choose the particular single-
valued self-similar coefficient A, or @ = 1/(1—~A), on the principle of analyticity of
the resulting solution (Brushlinskii & Kazhdan 1963). Butler (1954) also investigated
the implosion of an ideal gas with the aid of a high-speed computer and chose, from
the various values of A, the ‘one non-singular’ solution of the set of ordinary differential
equations. We shall show now that this postulate of analyticity of Gelfand and Butler
leads directly to the postulate of a single maximum in the pressure distribution,
d P = 0, behind the shock front adopted in this paper.

With the aid of the transformation (2.8) we expressed the pressure and the density
of the gas in terms of U; see (4.2). Equation (4.9) is the differential equation for U
before any additional transformations. Its left-hand side is finite and at the singularity
then, when the denominator of the right-hand side of equation (4.9) vanishes,

UdU+(1+A) U +AE = K[y(£d, U+ U)+2(A+7) £}, (9.1)

where K is an arbitrary number. Considering the conservation equations (2.12) the
last differential equation reads

y=1 dP P 2
2()“)_1)2 v = K¢U 5 (9.2)
de P 4 5
i Sl I - QA = 9.3
or LU B [K §U7(7+1)2O 0, (9.3)
where C(£) is the reduced speed of sound, see (7.4). For an arbitrary K,
d; P = 0; (9.4)
see §4. When K = (1/v€) U, with U the reduced speed at the singularity,
4
(- U%=0; 9.5
(y+1)? ©-5)

see (9.2) and §7, where it is shown that — U = 2/(y+1)C at the point where the
pressure is maximum.

Equation (4.9) was obtained by an integration of the conservation equations (2.12),
from the shock front at £ = 1 to some arbitrary point £ behind it. The left-hand side
of (4.9) is finite and we considered the singularity on the right-hand side of this equa-
tion. Clearly other forms and equations could be investigated and analyticity studied
differently. Butler, by postulating analyticity, arrives at a single-valued solution
A(y). In this paper a single-valued solution A(y) is obtained by postulating a pressure
maximuin ng = 0, behind the shock front. It is clear then, in general, that the two
postulates, of analyticity and of d;P = 0, must concur, for there can be only one
physically admissible solution A(y) (Zeldovich & Raizer 1967, p. 801).

One of the authors (E.A.M.) is greatly indebted to Professor Paul 8. Slosberg of
Mount Sinai, New York.
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Appendix
The discriminant of the quadratic equation (6.4)
[A2-y)+7PP+4y*A =0, (A1)
R S
when A= R (A 2)

Insertion of the values of A into the initial value 2(1) leads to

?;*(Sil)l— (Y2 +6y+1) < —(y+1) (439)

(see (5.5)), or +42y) > y—1. (A 4)

There can be no minus sign on the left-hand side of the last inequality for its right-
hand side is positive, and the solution, A = —A(y% — 23)2, is to be discarded.
The discriminant (A 1) is positive when

N S A5
A>A, = GErohe: (A 5)

It is easily seen that
A== —2= gy y>2+3t (A 6)

°T y+1)(2y—1)

easily satisfies the (A 5) constraint.
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